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Fig. 5 shows the measured amplitude and phase characteristics of the
high-power amplifier under test. The two-tone average output powers
of fundamental, IM3, and IM5 are plotted in Fig. 5(a). The measured
relative phases are plotted in Fig. 5(b). The first measurement point of
fundamental is set to zero phase and the others are calculated to have
relative values. The measured phases of IM3 and IM5 vary rapidly as
the power level approaches saturation.

IV. CONCLUSION

To adequately consider the memory effect for high-power ampli-
fiers, we have presented a new accurate method for measuring two-tone
transfer characteristics. We measured the characteristics of a multistage
high-power amplifier with a 500-W power output and 44.5-dB gain. We
have used a trustworthy reference IM generator at a very low frequency.
The two-tone harmonic balance simulation shows the accuracy of the
relative phase of the reference IM generator. The complete measure-
ment setup and sequence have been described.

We measured the relative phases of fundamental, IM3, and IM5. The
measured data of IM3 and IM5 are very smooth and continuous, and
vary rapidly as the power level approaches the output power satura-
tion. The measured two-tone transfer characteristics are very useful for
the design of predistortion linearizer or nonlinear model extraction for
high-power amplifiers.
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Integration Equation Analysis on Resonant Frequencies
and Quality Factors of Rectangular

Dielectric Resonators

Shyh-Yeong Ke and Yuan-Tung Cheng

Abstract—In this paper, the resonance problem of rectangular dielectric
resonators (DRs) is analyzed by using the spectral dyadic Green’s func-
tion and volume integral-equation formulation. The rectangular dielectric
body is replaced by a set of entire-domain polarized volume current basis,
and Galerkin’s moment method is used to solve the resonant frequency and
quality factor of the rectangular DR. The effects of electrical and geomet-
rical parameters on the resonance of theTE mode of isolated DRs are
also presented. Additionally, the case of a rectangular DR with a ground
plane is also discussed. Results are found to be in good agreement with the
published experimental data.

Index Terms—Dielectric resonators, method of moments.

I. INTRODUCTION

Dielectric resonators (DRs) are extensively used for microwave cir-
cuit components such as filters and antennas [1], [2]. Recently, open
rectangular DRs for use as radiation elements have received increasing
attention due to their simplified mechanism and easy integration with
microwave integrated circuits (MICs). Besides, the microwave com-
ponents made of high-permittivity dielectric materials have the advan-
tages of small size and temperature stability. In the DR filter or DR an-
tenna design, the quality factor is a very important consideration since it
accounts for the loss (dielectric and radiation losses) of a DR. Further-
more, accurate prediction of the DR’s resonant frequency is of interest
in the design of a narrow-band component. A number of studies for rig-
orously evaluating the resonant frequencies and quality factors of cylin-
drical or rectangular box-like DRs have been reported. The surface in-
tegral formulation [3], the least-square method [4], the mode-matching
method [5], and the finite-difference time-domain method [6] have
been successfully used to investigate the resonance problems of cylin-
drical DR structures. However, the exact numerical method for ana-
lyzing electromagnetic problems of a three-dimensional structure often
takes much CPU time. This motivates this present study of using an ac-
curate and efficient numerical method to analyze the resonance prob-
lems of open rectangular DR structures.

In this paper, the resonant frequencies and radiationQ factors of
TE111 modes of open rectangular DRs are investigated by using a
volume integral-equation solution. The spectral dyadic Green’s func-
tions and electric-field integral equations are derived and described in
the Section II. A set of entire-domain volume current basis is presented
for efficiently calculating the complex resonant frequencies of rect-
angular DRs. In Section III, numerical results are presented and dis-
cussed. Finally, conclusions are presented in Section IV.

II. THEORY

A. Spectral Dyadic Green’s Function and Integral-Equation
Formulation

Fig. 1 shows the geometry of the rectangular DR under considera-
tion. The rectangular DR is with a dimension of2W � 2L� 2h and a
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Fig. 1. Geometry of a rectangular DR on a grounded substrate.

relative permittivity of"r , and is located on a grounded substrate. The
substrate has a thickness oft and a relative permittivity"s. Here, the
substrate is assumed to be uniform and of infinite extension. The air
is with permittivity"o and permeability�o. In the absence of the feed
source, the electromagnetic problem of the DR with the permittivity
"1 = "o"r is equivalent to have the polarized current source (sup-
pressingej!t time dependence)

Jeq r = j!"o("r � 1)E r (1)

whereE( r ) is the total electric field, which consists of the incident
electric fieldEi( r ) due toJeq( r ) and the scattering fieldEs( r ) due
to the obstacle (the grounded substrate). The total electric field can be
written as the integral equation

E r = k2o("r � 1)
V

G r ; r 0 �E r 0 dV r 0 (2)

whereko = !
p
�o"o, Vd is the volume occupied by the rectangular

DR andG( r ; r 0) denotes the dyadic Green’s function, described by
the following spectral expression [7]:
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The first term on the right-hand side of (4) is the Green’s function for
the rectangular DR in an unbounded medium. The second term on the
right-hand side of (4) is the Green’s function that accounts for the effect
of the obstacle on the wave propagation. The leakage phenomenon of
a dielectric material is caused by TE–TM wave coupling [8].RTE and
RTM are, respectively, the reflection coefficients of TE and TM waves
incident upon the boundaryz = t from the air region to the substrate
region.

B. Entire-Domain Basis and the Moment-Method Solution

This section describes the numerical method of calculating the elec-
tric-field integral equation in (2). The computation time is largely re-
duced by calculating the integral equation in a two-dimensional (kx and
ky) space. First, a set of entire-domain volume current basis is utilized
to expand the electric fields inside the rectangular DR. The advantage
from choosing the entire-domain basis is its efficiency in the numer-
ical calculation since few unknowns are to be determined. Here, the
entire-domain basis functions based on the magnetic wall model are
chosen to be
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are the unknown coefficients of the electric field inside the DR.
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the electric fieldEz inside the DR at the resonance of theTEx
111
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the electric fieldEz inside the DR at the resonance ofTEy
111 and

TEz
111 modes, respectively. Here, the mode nomenclature follows

the definition by Mongia and Ittipiboon [9]. If the dimensions of an
isolated DR are such that2W > 2L > 2h, the modes in the order of
increasing resonant frequency areTEz

111, TEy
111, andTEx

111.
Next, substituting the Fourier transforms of (6) into (2), then ap-

plying the Galerkin’s moment method, and integrating (2) over the rect-
angular dielectric volume, we have the following matrix equation:
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where the superscriptT denotes a matrix transpose andzt andzb are the
z-directional positions that correspond to the top surface and bottom

Fig. 2. Resonant frequencies andQ factors of theTE modes versus the
aspect ratios (L=w) for isolated rectangular DRs:2W = 0:877 cm, 2h =

0:351 cm" = 20, 37.84, and 79.46. (a) Resonant frequencies. (b)Q factors.

surfaces of the DR, respectively.~bqp;mn(kx; ky; z) is the two-dimen-
sional Fourier transfrom ofbqp;mn(x; y; z); q = x; y; z.

In (7), the integration alongz- andz0-directions can be derived as
analytical expressions, which, for brevity, are not included in this paper.
Thus, the three-dimensional integral equations in (7) can be transferred
into two-dimensional integral problems. Finally, (7) is rewritten as a
general matrix form in the moment method

ZN�NIN = 0 (8)

whereZN�N is the impedance matrix whose elements are electric-
field integration equations defined in (7),IN is a column matrix whose
elements correspond to the unknown coefficientIqp;mn in (6). Equation
(8) has a nontrivial solution forIN if the determinant ofZN�N van-
ishes. This condition is satisfied by complex resonant frequencies, i.e.,

det ZN�N
f=f +jf

= 0 (9)

wherefr andfi are, respectively, the real part and imaginary parts of
the complex resonant frequency. For a particular resonant mode of a
DR with real permittivity,fr gives the resonant frequency andQr(=
fr=(2fi)) gives the radiationQ factor of the DR.

III. RESULTS AND DISCUSSIONS

In this section, two cases for open rectangular DRs in typical mi-
crowave applications are investigated. As shown in Fig. 1, they are the
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Fig. 3. Variations of resonant frequencies andQ factors with the aspect
ratios (L=W ) for grounded rectangular DRs excited atTE , TE , and
TE modes:2W = 0:877 cm,2h = 0:351 cm," = 37.84. (a) Resonant
frequencies. (b)Q factors.

isolated DR (in the absence of the grounded substrate) and the DR on
a ground plane (the substrate thickness is zero). In the calculation of
the moment method, nine bases (m = 1; n = 1; p = 1; 2; 3) and 18
bases (m = 1; n = 1; p = 1; 2; 3; 4; 5; 6) are, respectively, chosen
for the isolated DR and the DR on a ground plane. Since the integrand
in (7) has branch points and poles, the integration path in our numerical
computation is selected to be the deforming contour in the�-plane [10].
Such an integration path can avoid the numerical error due to singulari-
ties existing in the integrand [7]. The required CPU time for computing
the complex frequencies of an isolated DR and a DR on a grounded
plane are, respectively, about 6 and 22 min on a Pentium-333 PC. The
discrepancy between the theoretical resonant frequencies and the ex-
perimental resonant frequencies [9] is within 0.6% for the isolated DR
cases.

The effects of electrical and geometrical parameters on the resonance
of theTEz

111 mode for isolated rectangular DRs are presented in Fig. 2.
It can be seen that the rectangular DRs with lower permittivity have
lower Qr factor (higher radiation loss). Besides, the dimension of a
rectangular DR also affects itsQr factor. This is due to the fact that the
geometry factor confines the degree of field concentration in the rect-
angular DR [4]. Next, numerical results for the effects of the ground
plane on the resonance of theTE111 mode are shown in Fig. 3. Com-
paring Fig. 3 with Fig. 2, it can be found that theQr factor of theTEz

111

mode of a rectangular DR on a ground plane is much higher than that
of the isolated rectangular DR case. Thus, a high-permittivity grounded
rectangular DR excited at theTEz

111 mode is suitable for using as a
filter (or a resonator) under adequate aspect ratio (e.g.,L=W �= 1)
conditions. On the contrary, the grounded rectangular DR excited at
theTEx

111 or TEy

111
modes is better for using as an antenna since it

has lowerQr factors. It should be noted that the resonant frequency
andQr factor of theTEx

111 mode are the same as those of theTE
y

111

mode atW = L. That is, degenerate modes can also be excited in a
rectangular DR structure. Furthermore, the behavior features of theQr

factors strongly depend on the resonant modes of the DRs. The reason
is the different radiation effects resulted from vertical magnetic dipoles
(resonance in theTEz

111 mode) and horizontal magnetic dipoles (res-
onance in theTEx

111 orTEy

111
mode) above a ground plane [9].

IV. CONCLUSIONS

In this paper, the integral-equation approach has been employed to
solve the resonance problems of open rectangular DR structures. It can
be used to accurately calculate the complex resonant frequencies of
rectangular DR structures, as discussed here. Besides, the entire-do-
main basis functions based on the magnetic wall model has been pre-
sented. The integral equation in conjunction with the sinusoidal basis
functions is more efficient for computing the resonance problems of
three-dimensional rectangular structures. Next, the numerical results
show that a high-permittivity grounded DR excited at theTE

z

111 mode
is suitable for use as a filter or a resonator. On the other hand, the
low-permittivity rectangular DR excited at theTEx

111 (orTEy

111
) mode

is good for use as an antenna. Here, we conclude that the DRs permit-
tivity together with geometrical factors should be considered in a rect-
angular DR antenna (or filter) design.
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